Bixin protects mice against ventilation-induced lung injury in an NRF2-dependent manner
نویسندگان
چکیده
Mechanical ventilation (MV) is a therapeutic intervention widely used in the clinic to assist patients that have difficulty breathing due to lung edema, trauma, or general anesthesia. However, MV causes ventilator-induced lung injury (VILI), a condition characterized by increased permeability of the alveolar-capillary barrier that results in edema, hemorrhage, and neutrophil infiltration, leading to exacerbated lung inflammation and oxidative stress. This study explored the feasibility of using bixin, a canonical NRF2 inducer identified during the current study, to ameliorate lung damage in a murine VILI model. In vitro, bixin was found to activate the NRF2 signaling pathway through blockage of ubiquitylation and degradation of NRF2 in a KEAP1-C151 dependent manner; intraperitoneal (IP) injection of bixin led to pulmonary upregulation of the NRF2 response in vivo. Remarkably, IP administration of bixin restored normal lung morphology and attenuated inflammatory response and oxidative DNA damage following MV. This observed beneficial effect of bixin derived from induction of the NRF2 cytoprotective response since it was only observed in Nrf2(+/+) but not in Nrf2(-/-) mice. This is the first study providing proof-of-concept that NRF2 activators can be developed into pharmacological agents for clinical use to prevent patients from lung injury during MV treatment.
منابع مشابه
15-Deoxy-Δ12,14-Prostaglandin J2 Protects PC12 cells from LPS-Induced Cell Death Through Nrf2 pathway in PPAR-γ Dependent Manner
Introduction: The inflammatory response requires a coordinated integration of various signaling pathway including cyclooxygenase (COX). COX catalyzes the formation of prostaglandins from arachidonic acid. Among prostaglandins, 15-Deoxy-D12, 14-prostaglandin J2 (15d-PGJ2), an endogenous ligand of Peroxisome proliferator-activated receptor-gamma (PPAR-γ), has been demonstrated to have anti-inflam...
متن کاملTopical Bixin Confers NRF2-Dependent Protection Against Photodamage and Hair Graying in Mouse Skin
Environmental exposure to solar ultraviolet (UV) radiation causes acute photodamage, premature aging, and skin cancer, attributable to UV-induced genotoxic, oxidative, and inflammatory stress. The transcription factor NRF2 [nuclear factor erythroid 2 (E2)-related factor 2] is the master regulator of the cellular antioxidant response protecting skin against various environmental stressors includ...
متن کاملp-Coumaric acid protects cardiac function against lipopolysaccharide-induced acute lung injury by attenuation of oxidative stress
Objective(s): Acute lung injury (ALI) has a high mortality rate and is characterized by damage to pulmonary system giving rise to symptoms such as histological alteration, lung tissue edema and production of proinflammatory cytokine. p-Coumaric acid (p-CA), as a phenolic compound, that is found in many types of fruits and vegetables has been reported to exhibit a thera...
متن کاملSeabuckthorn Paste Protects Lipopolysaccharide-Induced Acute Lung Injury in Mice through Attenuation of Oxidative Stress
Oxidative stress is one of the major mechanisms implicated in endotoxin-induced acute lung injury. Seabuckthorn paste (SP), a traditional Tibetan medicine with high content of polyphenols and remarkable antioxidant activity, is commonly used in treating pulmonary diseases. In the present study, the protective effects and possible underlying mechanisms of SP on lipopolysaccharide- (LPS-) induced...
متن کاملTargeting NRF2 for Improved Skin Barrier Function and Photoprotection: Focus on the Achiote-Derived Apocarotenoid Bixin
The transcription factor NRF2 (nuclear factor-E2-related factor 2) orchestrates major cellular defense mechanisms including phase-II detoxification, inflammatory signaling, DNA repair, and antioxidant response. Recent studies strongly suggest a protective role of NRF2-mediated gene expression in the suppression of cutaneous photodamage induced by solar UV (ultraviolet) radiation. The apocaroten...
متن کامل